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Recursive approach to random sequential adsorption
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We present a generalization of Renyi’s@A. Renyi, Trans. Math. Stat. Prob.4, 205 ~1963!# classical solution
to the one-dimensional random sequential adsorption~RSA! problem, to the case where particle sizes are
drawn from an arbitrary distribution, a process known as competitive RSA. We formulate the process using
recursive relations, and without explicitly solving the equations, we extract limiting behavior which leads to
exact analytic expressions for the final coverage. Our analysis is confirmed by computer simulations.
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The process of random sequential adsorption~RSA! mod-
els a diverse collection of physical phenomena, ranging fr
reactions on polymer chains@1# to protein deposition@2#, and
even ecological systems@3#. As a result, RSA has been th
subject of intensive research@4–9# ~see Ref.@9# for review!.

The simplest example of one-dimensional~1D! RSA is
the so called ‘‘car parking’’ problem: how many random
parking motorists, on average, can be accommodated
street of a given length? The 1D RSA problem has b
solved analytically for the cases when all ‘cars’ are of eq
length and ‘‘parking sites’’ are discrete@1,10,11# or continu-
ous@12#. Efforts have also been made to understand the R
of multiple lengths, so called competitive random sequen
adsorption~CRSA! @13–16#. These have yielded some lim
ited analytical expressions for the final coverage due t
restricted class of adsorbant distributions@13,14#, as well as
numerical values for the coverage due to more general
tributions @15#. However, no exact analytic results appear
the literature for the final coverage produced by a gen
distribution. Determining the time dependant behavior of
coverage is considerably more challenging@9#. Recently, an
analytical solution has been found for the case of a bin
mixture @17#, but this relies on a carefully constructed cas
specific ansatz, without suggesting a path to solutions
more general cases.

In this paper, we begin by reviewing Renyi’s recursi
formulation of the 1D RSA problem, where without expli
itly solving the equations, the infinite length limit can b
extracted~using Laplace transforms!, leading to an exac
analytic expression for the final coverage. We then genera
this exact solution to the CRSA of a mixture described by
arbitrary distribution function. This is our main result, fro
which we duly recover the analytical form for the saturati
coverage due to a binary mixture, given by the infinite tim
limit of Ref. @17#. Finally, we present our computer simul
tions which confirm the analytical results.

Consider an empty lengthx.1, onto which blocks of unit
length may be adsorbed. The first block can be rando
placed over an available length ofx21, after which its po-
sition is fixed, and any overlap of blocks is forbidden. The
fore, upon the first block being adsorbed, two independ
gaps adding up tox21 arise, see Fig. 1. The process
adsorption is sequential, such that two blocks cannot be
sorbed simultaneously. Letf (x) be the number of blocks
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expected on average to eventually occupy an initially em
lengthx, then after the adsorption of the first block atx8 the
expectation becomes: 11 f (x8)1 f (x212x8). Averaging
over all possible initial sites,x8, we have

f ~x!511
1

x21E0

x21

dx8@ f ~x8!1 f ~x212x8!# ~1!

which, thanks to its symmetry, can be simplified to

f ~x!511
2

x21E0

x21

dx8 f ~x8!. ~2!

This is Renyi’s master equation, which is analogous to
one first derived for the discrete case by Flory@1#. The initial
condition for this integral equation is

f ~x!50 for 0<x,1 ~3!

because no blocks can be accommodated by a length
than 1. Repeated substitution off (x) into the right-hand side
of equation~2! leads to

f ~x!51 for 1<x,2

5
3x25

x21
for 2<x,3

5
7x21724 ln~x22!

x21
for 3<x,4,

and so on. The nested integration arising in the iterated fo
of Eq. ~2! injects rapidly increasing number of terms, makin
a closed functional form forf (x) rather impractical in con-
trast to the discrete case@1#. Numerically however, Eqs.~2!
and~3! can be propagated to obtain the solutionf (x) for any
x, providing a direct test of the asymptotic solution. For t
more interesting case of CRSA this numerical solution h

FIG. 1. Adsorption of the first block.
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been used to test the saturation coverage of some spe
distributions @15#. However, the numerical propagation fo
general distributions is rather cumbersome, and we turn
direct computer simulation. Figure 2 shows the functi
f (x).

In the limit of largex, since the boundary effect decay
over a finite length@9,18# we expect the saturation coverag
to increase linearly withx:

lim
x→`

f ~x!5ux ~4!

and we are interested in this saturation coverage efficiencu,
which can be extracted from the Laplace transform off (x),
F(p)[L@ f #, as the coefficient of thep22 term in the limit
of p→0:

lim
p→0

F~p!5
u

p2
. ~5!

Note that, only in the limit ofp→0 is the Laplace integra
dominated by largex for which f (x)5ux is justified.

It is now possible, without explicitly solving the maste
equation~2!, to obtain the efficiencyu. First differentiate the
master equation~2! with respect tox, and then make the
change of variablesx→x11 so that the equation is valid fo
all x.0:

x f8~x11!52 f ~x!2 f ~x11!11. ~6!

The dash denotes differentiation with respect to the dep
dent variable. Taking the Laplace transform, we find t
F(p)[L@ f # obeys

F8~p!1S 11
2e2p

p DF~p!52
e2p

p2
, ~7!

a linear first-order differential equation. By introducing th
integrating factor

m~p!5expF2E
p

kS 11
2e2u

u DduG , ~8!

FIG. 2. The expectation of the number of blocks occupying
initially empty lengthx at saturation,f (x).
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we can write the solution of Eq.~7! as

F~p!5m~p!21FF~k!1E
p

k m~w!e2w

w2
dwG , ~9!

which is independent of the choice ofk. We now make this
solution explicit by takingk to ` as follows. Since we know
the initial form of f (x) ~see Fig. 1!, we can deduce the func
tional form of F(p) in the limit p→`, where, knowing
f (x)50 on @0,1) andf (1)51:

lim
p→`

F~p!5 f ~1!E
1

`

e2px dx5
e2p

p
. ~10!

This allows us to rewrite the solution, Eq.~9!, in the form

F~p!5 lim
k→`

e2p

p2 Fkg~p,k!1E
p

k

g~p,w!dwG , ~11!

with function g defined as

g~p,q!5expF22E
p

q 12e2u

u
duG . ~12!

For consistency, it can be readily checked that the ab
expressions recover the limit~10! for p→`. Now we con-
siderF(p) in the p→0 limit. Since

lim
k→`,p→0

kg~p,k!}
1

k
→0 ~13!

the first term in Eq.~11! may be dropped, which leads to

lim
p→0

F~p!5
1

p2E0

`

g~0,w!dw. ~14!

The final coverage efficiencyu is the coefficient ofp22, cf.,
Eq. ~5!:

u5E
0

`

expF22E
0

w 12e2u

u
duGdw50.7476 . . . .

~15!

This is theRenyi limit which may equivalently be obtaine
by numerical propagation of the Eqs.~2! and ~3!.

We now extend the analysis to the more general cas
CRSA, where adsorbing blocks~of length l ) are randomly
drawn from a normalized distributionr( l ). Again we start
with an empty lengthx. l max, where l max ( l min) are the
largest~smallest! sized blocks in the distribution. The prob
ability of a lengthl block landing withinx is:

P~ l ,x!5
~x2 l !r~ l !

x2 l̄
, ~16!

where average length is given by

l̄ 5E
0

`

l r~ l !dl. ~17!

n
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The previous master equation~2! is then averaged over th
landing probabilityP( l ,x) to obtain an equation for the av
erage length covered,f r(x), given a distributionr( l )

f r~x!5E
0

`

dl P~ l ,x!F l 1
2

x2 l E0

x2 l

f r~y!dyG , ~18!

which is valid for all x. l max. The function f r(x) is the
generalization off (x). f r(x) is still expected to increas
linearly in the limit of largex so that the Laplace analys
remains valid, cf., Eqs.~4! and~5!. For the sake of simplicity
and clarity, we shall present here the results for the restric
case of l max<2l min , e.g., Ref. @17#. In this case, forx
, l max, only a single adsorption event occurs before satu
tion, and the initialf r(x) is given by a limited average:

f r~x!5

E
0

x

r~ l !l ~x2 l !dl

E
0

x

r~ l !~x2 l !dl

. ~19!

The more general case ofl max.2l min is straightforward
in principle with calculations becoming more cumbersome
the ratio l max/ l min increases@19#. The CRSA equivalent of
Eq. ~7! is now given by

F8~p!1R~p!F~p!5U8~p!1 l̄ U~p!2S~p!e2plmax,
~20!

where

R~p!5 l̄ 1
2

pE0

`

r~ l !e2pl dl, ~21!

U~p!5E
0

l max
f r~x!e2px dx, ~22!

S~p!5
~ l max2 l̄ ! f r~ l max!p1 l̄

p2
. ~23!

It is again possible to introduce an integrating factor a
write down a solution analogous to Eq.~9!. Noting that the
first nonzero value off r(x) is f r( l min)5 l min then

lim
p→`

F~p!5
e2plmin

p
, ~24!

which allows us to write the solution explicitly, and our lim
analysis forp→0 leads to the final coverage, cf. Eq.~14!:
03710
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u@r~ l !#5E
0

`

dw 2wel̄ wF~w!E
0

`

r~s!e2ws ds

3E
0

`
E

0

y

r~ l !l ~y2 l !dl

E
0

y

r~ l !~y2 l !dl

e2wy dy

1E
0

`

dw e( l̄ 2 l max)wF~w!

3FwE
0

`

r~ l !l ~ l max2 l !dl1 l̄ G , ~25!

where

F~w!5expF 22E
0

w
12E

0

`

r~ l !e2uldl

u
duG . ~26!

Equation~25! is our main result, which allows the determ
nation of final coverage efficiency for adsorbing particl
described by anarbitrary distribution functionr( l ) provided
l max,2l min ~for l max.2l min , the expression would be muc
more complicated!. The infinite time limit predicted by the
analytic work of Hassanet al. @17# for a binary mixture is a
special case of our solution.

For the purpose of illustration, we take the adsorption
an equal binary mixture of lengths 1 andm (m<2):

rb~ l !5 1
2 @d~ l 21!1d~ l 2m!#, ~27!

which leads to

u~m!5E
0

`

h~m,w!G~0,w!dw, ~28!

where

G~p,w!5expS 2E
p

w22e2u2e2mu

u
duD ,

and

h~m,w!5e@~m23!/2#w1e@2~11m!/2#w1
m21

2
e@2~m21!/2#w.

Our analytic result, Eq.~28!, agrees~after integration by
parts! with the infinite time limit of the equal weight case o
Hassanet al. @17#. Similarly, we can specify a top hat distr
bution between 1 andm (m<2) as

rh~ l !5
1

m21
@H~ l 21!2H~ l 2m!# ~29!

or a wedge function as

rw~ l !5
2

m21
@H~ l 21!2H~ l 2m!#~ l 21!, ~30!
2-3
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whereH( l ) is the standard Heaviside step function. Sub
tution of these distribution functions into our Eq.~25! allows
the final coverage to be computed within seconds~using
standard software packages such asMATHEMATICA on a mod-
ern PC!. The results are presented in Fig. 3, along with

FIG. 3. The saturation coverageu for three distributions where
l min51 andl max5m.
es

.
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results of computer simulations we carried out separat
The simulation points in Fig. 3 were obtained over days, a
are in agreement with our analytic results to three signific
figures.

It should be noted that this recursive technique may a
be used to determine the distribution of gaps between ne
boring blocks at saturation. Letg(x,l )dl be the expected
number of gaps in the range@ l ,l 1dl#, after saturating an
initially empty lengthx with unit length blocks, then we hav

g~x,l !5
2

x21E0

x21

g~y,l !dy. ~31!

This equation is readily generalized to the case of a d
tribution of block lengths and solved using the same te
nique as described above@19#.

In summary, we have generalized the recursive formu
tion of the 1D RSA problem to find anexact analyticexpres-
sion for the final coverage produced by the CRSA of a g
eral distribution of sizes. These analytic results have b
confirmed by our computer simulations.

We would like to thank D. E. Khmelnitskii, P. D. Hayne
and R. Haydock for helpful discussions.
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